Early Warning Scores as a Predictor of Mortality in Non Comorbid COVID-19 Patient

Authors

DOI:

https://doi.org/10.26699/jnk.v11i2.ART.p153-159

Keywords:

mortality, non-comorbid, COVID- 19, Early Warning Scores

Abstract

There are several non-comorbid COVID-19 patients lead to mortality, but the risk factors that affect it have not been widely discussed in research. Treatment of COVID-19 patients focuses more on patients with comorbidities. This study aimed to check the effectiveness of Early Warning Scores (EWS) assessment to predict the mortality of non-comorbid COVID-19 patients. The method of the study was a case study research with a retrospective approach using secondary data, namely the patient's medical record status. This study took medical record data from 262 patients confirmed positive for non-comorbid COVID-19 who were hospitalized at Ngudi Waluyo Wlingi Hospital from July to September 2021. The multivariate data analysis used multiple linear regression tests to simultaneously test the relationship of the independent variables (age, gender, and Early warning score) to the dependent variable (mortality). The statistical analysis result showed the correlation between gender, age, and assessment with mortality, each of which has a p-value of 0.000, meaning that each of these variables has a relationship with mortality. If a simultaneous test (F test) is carried out, the p-value is 0.000, meaning that gender, age, and EWS simultaneously affect mortality. The coefficient of determination or R square of 0.773 means that gender, age, and EWS simultaneously influence mortality by 77.3%. Early Warning Scores (EWS) assessment influenced the mortality of non-comorbid COVID-19 patients. The highest contribution affecting mortality was the EWS assessment. The contribution of influence on sex and age is relatively the same.

Author Biographies

Anita Rahmawati, STIKes Patria Husada Blitar


Anita Rahmawati
STIKes Patria Husada Blitar, Indonesia
(mceclip0-e415beefedcc2cbc460fc317cd250687.pngGoogle Scholar, mceclip1-975ef1beb0c6625c6f01d054f6f406d8.pngSinta, mceclip2-46336d215526dca6c673e9b2e01752cd.pngORCID)

Thatit Nurmawati, STIKes Patria Husada Blitar


Thatit Nurmawati
STIKes Patria Husada Blitar, Indonesia
(mceclip3.pngGoogle Scholarmceclip4.pngSinta, mceclip5.pngORCID)

Sandi Alfa Wiga Arsa, STIKes Patria Husada Blitar


Sandi Alfa Wiga Arsa
STIKes Patria Husada Blitar, Indonesia
(mceclip6.pngGoogle Scholarmceclip7.pngSinta, mceclip8.pngORCID)

Ulfa Husnul Fata, STIKes Patria Husada Blitar


Ulfa Husnul Fata
STIKes Patria Husada Blitar, Indonesia
(mceclip9.pngGoogle Scholarmceclip10.pngSinta, mceclip11.pngORCID)

References

Algahtani, F. D., Alsaif, B., Ahmed, A. A., Almishaal, A. A., Obeidat, S. T., Mohamed, R. F., Kamel, R. M., Gul, I., & Hassan, S. un N. (2022). Using Spiritual Connections to Cope With Stress and Anxiety During the COVID-19 Pandemic. Frontiers in Psychology, 13(July), 1–9. https://doi.org/10.3389/fpsyg.2022.915290

Biswas, M., Rahaman, S., Biswas, T. K., Haque, Z., & Ibrahim, B. (2021). Association of sex, age, and comorbidities with mortality in COVID-19 patients: a systematic review and meta-analysis. Intervirology, 64(1), 36–47. https://doi.org/10.1159/000512592

Bunders, M. J., & Altfeld, M. (2020). Implications of sex differences in immunity for SARS-CoV-2 pathogenesis and design of therapeutic interventions. Immunity, 53(3), 487–495. https://doi.org/10.1016/j.immuni.2020.08.003

Covino, M., Sandroni, C., Santoro, M., Sabia, L., Simeoni, B., Bocci, M. G., Ojetti, V., Candelli, M., Antonelli, M., & Gasbarrini, A. (2020). Predicting intensive care unit admission and death for COVID-19 patients in the emergency department using early warning scores. Resuscitation, 156, 84–91. https://doi.org/10.1016/j.resuscitation.2020.08.124

Dias, S. P., Brouwer, M. C., & Van De Beek, D. (2022). Sex and Gender Differences in Bacterial Infections. Infection and Immunity, 90(10). https://doi.org/10.1128/iai.00283-22

Doerre, A., & Doblhammer, G. (2022). The influence of gender on COVID-19 infections and mortality in Germany: Insights from age- and gender-specific modeling of contact rates, infections, and deaths in the early phase of the pandemic. PLoS ONE, 17(5 May), 1–20. https://doi.org/10.1371/journal.pone.0268119

Gao, Y., Cai, G. Y., Fang, W., Li, H. Y., Wang, S. Y., Chen, L., Yu, Y., Liu, D., Xu, S., Cui, P. F., Zeng, S. Q., Feng, X. X., Yu, R. Di, Wang, Y., Yuan, Y., Jiao, X. F., Chi, J. H., Liu, J. H., Li, R. Y., … Gao, Q. L. (2020). Machine learning based early warning system enables accurate mortality risk prediction for COVID-19. Nature Communications, 11(1), 1–10. https://doi.org/10.1038/s41467-020-18684-2

Hartantri, Y., Debora, J., Widyatmoko, L., Giwangkancana, G., Suryadinata, H., Susandi, E., Hutajulu, E., Hakiman, A. P. A., Pusparini, Y., & Alisjahbana, B. (2023). Clinical and treatment factors associated with the mortality of COVID-19 patients admitted to a referral hospital in Indonesia. The Lancet Regional Health - Southeast Asia, 11(38), 100167. https://doi.org/10.1016/j.lansea.2023.100167

Hikmawati, I., & Setiyabudi, R. (2021). Epidemiology of COVID-19 in Indonesia: common source and propagated source as a cause for outbreaks. Journal of Infection in Developing Countries, 15(5), 646–652. https://doi.org/10.3855/JIDC.14240

Hu, H., Yao, N., & Qiu, Y. (2022). Predictive Value of 5 Early Warning Scores for Critical COVID-19 Patients. Disaster Medicine and Public Health Preparedness, 16(1), 232–239. https://doi.org/10.1017/dmp.2020.324

Jannah, R. J., Jatimi, A., Azizah, M. J., Munir, Z., & Rahman, H. F. (2020). Kecemasan pasien Covid-19: A systematic review. Jurnal Penelitian Kesehatan Suara Forikes, 11(2), 33–37. http://doi.org/10.33846/sf11nk406

Kaeley, N., Mahala, P., Kabi, A., Choudhary, S., Hazra, A. G., & Vempalli, S. (2021). Utility of early warning scores to predict mortality in COVID-19 patients: A retrospective observational study. International Journal of Critical Illness and Injury Science, 11(3), 161–166. https://doi.org/10.4103/ijciis.ijciis_64_21

Li, J., Liu, Z., Wu, G., Yi, M., Chen, Y., Li, K., Xu, X., Xiao, L., Wu, Q., & Chen, J. (2020). D-Dimer as a prognostic indicator in critically ill patients hospitalized with COVID-19 in Leishenshan Hospital, Wuhan, China. Frontiers in Pharmacology, 11, 600592. https://doi.org/10.3389/fphar.2020.600592

Martin-Rodriguez, F., Martin-Conty, J. L., Sanz-Garcia, A., Rodriguez, V. C., Rabbione, G. O., Ruiz, I. C., Oliva Ramos, J. R., Castro Portillo, E., Polonio-Lopez, B., & Enriquez de Salamanca Gambarra, R. (2021). Early warning scores in patients with suspected COVID-19 infection in emergency departments. Journal of Personalized Medicine, 11(3), 170. https://doi.org/10.3390%2Fjpm11030170

Masdalena, M., Muryanto, I., Efendi, A. S., Yunita, J., & Gustina, T. (2021). Faktor Risiko Komorbid pada Kematian Covid-19 di Rumah Sakit X Tahun 2021. Jurnal Kesehatan Masyarakat Mulawarman (JKMM), 3(2), 105–117. https://doi.org/10.30872/jkmm.v3i2.7139

Nanda Nur Illah, M. (2021). Analisis Pengaruh Komorbid, Usia, dan Jenis Kelamin Terhadap Meningkatnya Angka Kematian pada Masa Pandemi Covid-19. Jurnal Sosial Sains, 1(10), 1228–1233. https://doi.org/10.59188/jurnalsosains.v1i10.232

Novelli, L., Raimondi, F., Ghirardi, A., Pellegrini, D., Capodanno, D., Sotgiu, G., Guagliumi, G., Senni, M., Russo, F. M., & Lorini, F. L. (2021). At the peak of COVID-19 age and disease severity but not comorbidities are predictors of mortality: COVID-19 burden in Bergamo, Italy. Panminerva Med, 51–61. https://doi.org/10.23736/S0031-0808.20.04063-X

Paliogiannis, P., Mangoni, A. A., Dettori, P., Nasrallah, G. K., Pintus, G., & Zinellu, A. (2020). D-dimer concentrations and covid-19 severity: A systematic review and meta-analysis. Frontiers in Public Health, 8(August), 1–7. https://doi.org/10.3389/fpubh.2020.00432

Perrotta, F., Corbi, G., Mazzeo, G., Boccia, M., Aronne, L., D’Agnano, V., Komici, K., Mazzarella, G., Parrella, R., & Bianco, A. (2020). COVID-19 and the elderly: insights into pathogenesis and clinical decision-making. Aging Clinical and Experimental Research, 32(8), 1599–1608. https://doi.org/10.1007/s40520-020-01631-y

Pradhan, A., & Olsson, P.-E. (2020). Sex differences in severity and mortality from COVID-19: are males more vulnerable? Biology of Sex Differences, 11(1), 53. https://doi.org/10.1186/s13293-020-00330-7

Rashedi, R., Samieefar, N., Akhlaghdoust, M., Mashhadi, M., Darzi, P., & Rezaei, N. (2022). Delta variant: the new challenge of COVID-19 pandemic, an overview of epidemiological, clinical, and immune characteristics. Acta Bio Medica: Atenei Parmensis, 93(1). https://doi.org/10.23750/abm.v93i1.12210

Rias, Y. A., Rosyad, Y. S., Chipojola, R., Wiratama, B. S., Safitri, C. I., Weng, S. F., Yang, C. Y., & Tsai, H. T. (2020). Effects of spirituality, knowledge, attitudes, and practices toward anxiety regarding covid-19 among the general population in Indonesia: A cross-sectional study. Journal of Clinical Medicine, 9(12), 1–16. https://doi.org/10.3390/jcm9123798

Satria, R. M. A., Tutupoho, R. V., & Chalidyanto, D. (2020). Analisis faktor risiko kematian dengan penyakit komorbid COVID-19. Jurnal Keperawatan Silampari, 4(1), 48–55. https://doi.org/10.31539/jks.v4i1.1587

Su, Y., Ju, M. J., Xie, R. C., Yu, S. J., Zheng, J. L., Ma, G. G., Liu, K., Ma, J. F., Yu, K. H., Tu, G. W., & Luo, Z. (2021). Prognostic Accuracy of Early Warning Scores for Clinical Deterioration in Patients With COVID-19. Frontiers in Medicine, 7(February), 1–9. https://doi.org/10.3389/fmed.2020.624255

Thakur, B., Dubey, P., Benitez, J., Torres, J. P., Reddy, S., Shokar, N., Aung, K., Mukherjee, D., & Dwivedi, A. K. (2021). A systematic review and meta-analysis of geographic differences in comorbidities and associated severity and mortality among individuals with COVID-19. Scientific Reports, 11(1), 8562. https://doi.org/10.1038/s41598-021-88130-w

Tsai, W., Chen, C., Jo, S. Y., Hsiao, C. H., Chien, D. K., Chang, W. H., & Chen, T. H. (2023). Evaluation of Early Warning Scores on In-Hospital Mortality in COVID-19 Patients: A Tertiary Hospital Study from Taiwan. Medicina (Lithuania), 59(3). https://doi.org/10.3390/medicina59030464

Downloads

Published

11-09-2024

How to Cite

Rahmawati, A., Nurmawati, T., Arsa, S. A. W., Fata, U. H., & Murti, R. (2024). Early Warning Scores as a Predictor of Mortality in Non Comorbid COVID-19 Patient. Jurnal Ners Dan Kebidanan (Journal of Ners and Midwifery), 11(2), 153–159. https://doi.org/10.26699/jnk.v11i2.ART.p153-159

Issue

Section

Article

Most read articles by the same author(s)

<< < 1 2 3 4