The Detection of Stunting Anomalies in Toddler by Computer Vision

Authors

  • Friska Oktaviana STIKes Hutama Abdi Husada Tulungagung
  • Poppy Farasari STIKes Hutama Abdi Husada Tulungagung
  • Evita Widyawati STIKes Hutama Abdi Husada Tulungagung

DOI:

https://doi.org/10.26699/jnk.v11i1.ART.p099-104

Keywords:

stunting, z-score, mobile media

Abstract

The golden age is the most important period that all children go through. At this time, parents need to optimize their child's growth and development. The nutritional adequacy of toddlers must be monitored to detect abnormalities such as stunting, wasting, obesity and malnutrition. Stunting is a condition in young children where height or body length as measured by Z-score does not correspond to age. In today's digital era, healthcare generates large amounts of data every day. This data is in various forms, including text, numbers, and digital images or videos. Computer vision in health care is a field of artificial intelligence that allows computers to interpret and act on visual data, including monitoring the growth and development of toddlers. Computer vision can be used to analyze data on stunting status of toddlers. The aim of this research was to develop mobile media to be able to screen and monitor stunting in toddlers using computer vision. The type of the research was research and development methods where the function of using this method was for product validation and development, with the dependent indicator being stunting toddlers. The results of this research showed an accuracy of 90.5%. These results showed that the application of computer vision and artificial neural networks to predict stunting anomalies in toddlers could be used and showed good results. It is hoped that in the future this application can be used by the government, midwives and cadres to continuously monitor toddler stunting

Author Biographies

Friska Oktaviana, STIKes Hutama Abdi Husada Tulungagung

Midwifery Study Program

Poppy Farasari, STIKes Hutama Abdi Husada Tulungagung

Midwifery Study Program

Evita Widyawati, STIKes Hutama Abdi Husada Tulungagung

Midwifery Study Program

References

(SSGI), K. K. mengumumkan hasil S. S. G. I. (2023). Prevalensi Stunting di Indonesia Turun ke 21,6% dari 24,4%. Kementerian Kesehatan RI. https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20230125/3142280/prevalensi-stunting-di-indonesia-turun-ke-216-dari-244/

Adipranata, R., Lim, R., Setiawan, A., Informatika, T., Industri, F. T., Petra, U. K., & Surabaya, J. S. (2006). Rekonstruksi Obyek 3d Dari Gambar 2d Dengan Metode. Teknik Informatika, 1–7.

Elektro, F. T., Bethaningtyas, H., Elektro, F. T., Salam, R. A., & Elektro, F. T. (2023). Aplikasi Pengukuran Tinggi Citra Digital Menggunakan. 10(5), 4408–4411.

Kementerian Desa Pembangunan Daerah Tertinggal dan Transmigrasi. (2017). Buku saku desa dalam penanganan stunting. Buku Saku Desa Dalam Penanganan Stunting, 2–13.

Khulafa’ur Rosidah, L., & Harsiwi, S. (2019). HUBUNGAN STATUS GIZI DENGAN PERKEMBANGAN BALITA USIA 1-3 TAHUN (Di Posyandu Jaan Desa Jaan Kecamatan Gondang Kabupaten Nganjuk). Jurnal Kebidanan, 6(1), 24–37. https://doi.org/10.35890/jkdh.v6i1.48

Laily, L. A., & Indarjo, S. (2023). Literature review: Dampak stunting terhadap pertumbuhan dan perkembangan. Higeia, 7(3), 354–364.

Mahayanti, A., & Ismoyo, I. (2021). Peran Pendidikan Keperawatan Menghadapi Era Society 5.0. Prosiding Seminar Nasional Sains Teknologi Dan Inovasi Indonesia (SENASTINDO), 3(November), 303–310. https://doi.org/10.54706/senastindo.v3.2021.153

Marpaung, F., Aulia, F., & Nabila, R. C. (2022). Computer Vision Dan Pengolahan Citra Digital.

Murti, F. H., Djalal, D., Riyanto, E., Ikomp, M., Suhartono, D., Kom, M., Matematika, J., Sains, F., & Diponegoro, U. (2005). APLIKASI BERBASIS WEB UNTUK PEMANTAUAN STATUS GIZI DAN TUMBUH KEMBANG ANAK BERDASARKAN DATA ANTROPOMETRI.

PMK, K. (2023). Perlu Terobosan dan Intervensi Tepat Sasaran Lintas Sektor untuk Atasi Stunting KEMENKO PMK — Deputi Bidang Koordinasi Peningkatan Kualitas Kesehatan dan Pembangunan Kependudukan Kemenko PMK Y. B. KEMENTERIAN KOORDINATOR BIDANG PEMBANGUNAN MANUSIA DAN KEBUDAYAAN. https://www.kemenkopmk.go.id/perlu-terobosan-dan-intervensi-tepat-sasaran-lintas-sektor-untuk-atasi-stunting#:~:text=Secara global%2C berdasarkan data UNICEF,diantara negara-negara di Asia.

Selamawit M. Bilal, A. M. (2014). Jhpn0032-0441. Practices and Challenges of Growth Monitoring and Promotion in ETHIOPIA, 32(3), 441–451.

SSGI. (2023). Hasil Survei Status Gizi Indonesia. Kementerian Kesehatan Republik Indonesia, 77–77. https://promkes.kemkes.go.id/materi-hasil-survei-status-gizi-indonesia-ssgi-2022

Suryanto, A., Paramita, O., & Pribadi, F. S. (2017). The development of android - Based children’s nutritional status monitoring system. AIP Conference Proceedings, 1818(March). https://doi.org/10.1063/1.4976922

Trenggono, P. H., & Bachtiar, A. (2023). Peran Artificial Intelligence Dalam Pelayanan Kesehatan : a Systematic Review. Jurnal Ners, 7(1), 444–451. https://doi.org/10.31004/jn.v7i1.13612

Teknowijoyo, F. (2022). Relevansi Industri 4.0 dan Society 5.0 Terhadap Pendidikan Di Indonesia. Educatio, 16(2), 173–184. https://doi.org/10.29408/edc.v16i2.4492

Downloads

Published

21-05-2024

How to Cite

Oktaviana, F., Farasari, P., & Widyawati, E. (2024). The Detection of Stunting Anomalies in Toddler by Computer Vision. Jurnal Ners Dan Kebidanan (Journal of Ners and Midwifery), 11(1), 099–104. https://doi.org/10.26699/jnk.v11i1.ART.p099-104

Issue

Section

Article